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ABSTRACT
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs),
provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the
onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and
provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells,
a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review,
we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells.
We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further
characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development
of hPSC-derived blood products for therapeutic purpose. J. Cell. Biochem. 116: 1179–1189, 2015. � 2015 Wiley Periodicals, Inc.
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Hematopoietic stem cell (HSC) transplantation is the most
widely used stem cell therapy in the clinic to treat many blood

diseases. However, the limitation on the source of HSCs, including
bonemarrow, peripheral blood and umbilical cord blood, and the lack
of method for HSC expansion restrict HSC based clinic application.
Research and development of new technology for the production of
transplantable HSCs in vitro or ex vivo are essential for future clinical
application development. The successful derivation of human
pluripotent stem cells (hPSCs) provoked tremendous interest in using
hPSCs as a source to generate unlimited blood cells for therapeutic
purpose. Human blastocyst-derived pluripotent cell lines, human
embryonic stem cells (hESCs), were first generated in 1998 [Thomson
et al., 1998]. Thereafter, the successful differentiation of hESCs into
cell types spanning the three germ layers, such as neural progenitors
of endoderm [Ben-Hur et al., 2004; Schulz et al., 2004], cardiomyo-
cytes and endothelial cells of mesoderm [Levenberg et al., 2002;
Laflamme et al., 2007], and hepatocytes and pancreatic cells of
ectoderm [Cai et al., 2007; Shim et al., 2007; Wang et al., 2011],
demonstrated their pluripotent capabilities. Reprogramming of

somatic cells to generate human induced pluripotent stem cells
(hiPSCs) [Takahashi et al., 2007; Yu et al., 2007] provides an
unprecedented opportunity for disease modeling, patient-specific
drug-selection, and novel approaches of regenerative therapy based
on immunologically compatible patient-specific cells [Guha et al.,
2013]. Both hESCs and hiPSCs are hPSCswith similar gene expression
pattern, and similar developmental potential to generate functional
mature cells, including multilineage blood cells.

Since the first study of hESC differentiation into hematopoietic
cells by Kaufman et al. [2001], numerous studies have been
conducted and led to successful derivation of a broad spectrum of
blood cell lineages from hESCs and hiPSCs [Park et al., 2005; Galic
et al., 2006; Kennedy et al., 2007; Martin et al., 2008; Su et al., 2008;
Choi et al., 2009; Lu et al., 2010, 2011], promising future
development of clinical applications based on hPSC for transfusions,
hematopoietic stem cell (HSC) transplantation and cellular immu-
notherapy. Efforts to study the onset and hierarchy structure of
hPSC-derived hematopoietic differentiation revealed that hemato-
poietic differentiation from PSC recapitulate embryogenesis process,
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and knowledge gained from hPSC differentiation study will greatly
facilitate the advance of technical evolvement for clinical
application.

Recent studies have led to a better understanding of the
developmental relationship between hematopoietic and endothelial
lineages. The putative common progenitor of both hematopoietic and
endothelial lineages, the hemangioblast, has been studied in vitro and
in vivo in invertebrate and vertebrate systems [Park et al., 2005]. A
comparable hemangioblast population derived from hESC was
demonstrated by their capacity to generate blast colony-forming
cells (BL-CFCs), which displayed both hematopoietic and vascular
potential [Kennedy et al., 2007]. Although the nature of hemangio-
blasts is still debatable, increasing evidences indicate that hemogenic
endothelial (HE) cells are transient intermediates that contribute to de
novo production of multipotent HSCs during embryogenesis. The
molecular mechanisms underlying hematopoietic and HE develop-
ment are still largely unknown.

ONSET OF EMBRYONIC HEMATOPOIESIS

During embryonic development, hematopoiesis occurs in spatially
and temporally distinct sites. Parallel development of blood vessels
and blood cells (Fig. 1A) establishes a functional circulatory system

for the supply of nutrients and oxygen, and the removal of metabolic
wastes [Hirschi, 2012]. The origin of vascular and blood cells may be
different depending on the stage of development and the maturation
of hematopoiesis (Tables I and II).

EXTRAEMBRYONIC HEMATOPOIESIS
The earliest hematopoietic and endothelial cells arise in the extraem-
bryonic yolk sac (YS) that functions as placenta determining and
controlling uptake, translocation, and maternofetal transportation in
humans and in mice. YS is a bilayer structure of mesoderm- and
endoderm-derived cell layers composing of trophoblast and a single
layer of hypoblast [Jollie, 1990]. The endoderm layer forms an
epithelium that functions as liver and intestines later, whereas the
mesoderm layer gives the birth to the first visible blood cell in the YS,
which is a large nucleated primitive erythroblast [Palis and Yoder, 2001].

Blood islands in YS are recognized as structures comprising of an
outer luminal layer of angioblasts (endothelial progenitor cells) and
a loose inner mass of embryonic primitive hematopoietic cells that
initiate primitive hematopoiesis and constitute the first circulation.
In addition to primitive nucleated erythrocytes, megakaryocytes
and macrophages are also identified in primitive hematopoiesis
[Palis et al., 1999; Lichanska and Hume, 2000]. Whether embryonic
primitive hematopoietic cells contribute to fetal and adult

Fig. 1. Schematic hematopoietic differentiation of human PSC and normal human embryonic hematopoiesis. A: Human embryonic hematopoiesis occurs in extra-mesoderm to
generate primitive erythroid andmyeloid cells which is termed as extraembryonic hematopoiesis. Intraembryonic hematopoiesis originates from splanchnic mesoderm to form AGM
region. Bi-potent progenitor of hematopoietic and endothelial lineages, including hemangioblast and hemogenic endothelium, are responsible for definitive hematopoiesis and
give rise to mature blood cells in a stepwise timeline. B: Human ESCs or iPSCs form embryo bodies (hEB), which recalculate human yolk sac differentiation. Hemangioblast,
hemogenic endothelium, and primitive or definitive blood cells are generated in a sequential process.
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hematopoiesis remains a subject of longstanding debate [Cumano
et al., 2001; Palis et al., 2001; Baron, 2013]. In contrast to the adult
hematopoiesis that initiate from HSCs, the primitive hematopoietic
cells are derived from putative common bi-potent progenitors,
hemangioblasts, that also give rise to angioblasts to form primitive
vasculatures [Auerbach et al., 1996]. Hemangioblasts are meso-
dermal precursors characterized by expression of transcription
factor brachyury and Flk1 (KDR or VEGFR-2) [Ferkowicz and
Yoder, 2005]. Indirect tracing of Flk1þ cells in the YS reveals that
relatively few progenitors are detected, suggesting a very brief
existence of hemangioblasts prior to rapid differentiation and
expansion into restricted hematopoietic and vascular progenitors
as they egress from the primitive streak [Huber et al., 2004]. It is still
unclear whether primitive erythrocytes, megakaryocytes, and
macrophages directly arise from hemangioblasts. Transplantation
of YS cells from murine E9.0 or E10.0 into neonatal livers
contributes to adult lymphoid and myeloid, suggesting that YS in a
late stage of development has a potential to generate definitive
hematopoietic cells as well [Palis et al., 1999; Lux et al., 2008].
However, further evidences are required to confirm whether the
extraembryonic YS contributes to adult-type blood cells in nature.

INTRAEMBRYONIC HEMATOPOIESIS
An early study from chicken-quail chimeric embryos demonstrated
that, although extraembryonic hematopoiesis occurs early in
development, it is rather transient and regional, suggesting that
intraembryonic hematopoietic sources take more important role in
giving the birth of multilineage hematopoietic cells for embryonic
circulation [Dieterlen-Lievre, 1975]. About 100 years ago, “hemato-
poietic clusters” were postulated to arise from the vascular
endothelium of the dorsal aorta [Jordan, 1917]. In recent years,
studies in animal models have provided compelling evidences to
demonstrate that hemogenic endothelial (HE) cells, a specified subset
of endothelial cells in embryonic endothelium, give rise to multi-
potent definitive HSCs (Medvinsky and Dzierzak, 1996; Taoudi et al.,
2008; Eilken et al., 2009; Yoshimoto and Yoder, 2009; Tavian et al.,
2010; Hirschi, 2012; Swiers et al., 2013). Endothelium in the aortic-
gonado-mesonephros (AGM) region is a primary site to generate
definitive HSCs [Zovein et al., 2008; Tavian et al., 2010; Rafii et al.,
2013]. In addition, HSCs are also characterized from endothelium in
other tissues, such as the placenta [Rhodes et al., 2008], arterial vessels
[Gordon-Keylock et al., 2013], endocardium of embryonic heart
[Nakano et al., 2013], and embryonic head [Li et al., 2012]. Multiple

TABLE I. Comparison of Hemangioblasts and Hemogenic Endothelial Cells in Mouse

Location Features
Hemangioblasts
extraembryo

Hemogenic endothelial cell

ReferencesExtraembryo Intraembryo

In vivo Time E7.0–E7.75 mid-streak
stage of gastrulation

E8.25 lumen wall of
YK capillaries

E10.5–E11.5 ventral wall
of the dorsal aortic
endothelium

[Adamo et al., 2009; Huber et al.,
2004; Iacovino et al., 2011;
Kim et al., 2013; Liu et al.,
2013; Marcelo et al., 2013;
Tsunoda et al., 2010; Yue
et al., 2012]

Phenotype Brachyuryþ Flk-1þ Flk1þc-KitþCD45�Aldhþ

SP cells
Flk-1þc-KitþCD31þ

CD45�CD34þ

AA4.1þ/VECþ

Aldhþ SP cells
Differentiation

potential
Primitive hematopoiesis

and endothelium
smooth muscle

Definitive hematopoiesis
and endothelium

Definitive hematopoiesis
endothelium

Transcript
factors

Flk1, Hhex, Mixl1,
Smad1, Scl,Runx1,
Gata1, lmo2, ZFAT

Scl/TAL1, Hhex, Runx1,
Gata2, Gata3,c-Myb,
Gfi1,Gfi1b

Sox17, HoxA3, Scl,
Runx1, Gata2, Gfi1,
Gfi1b, Fli1

Signaling
pathways

ER71, VEGF/Flk1, FGF,
BMP, Notch, Wnt,
Hedgehog (Hh), Spry1

RA/c-kit/Notch1/p27 RA, Notch1, Wnt, BMPs,
Hedgehog (Hh), NO
signaling, VEGF,
IL-1, IL-3

In vitro
(ESC)

Time 3.25–4 days of EB After 36–48 h cultured
hemangioblasts

[Adamo et al., 2009; Choi et al.,
1998; Faloon et al., 2000;
Goldie et al., 2008; Kim et al.,
2013; Lancrin et al., 2009; Liu
et al., 2013; Marcelo et al.,
2013; Pearson et al., 2008;
Pimanda et al., 2007; Yue
et al., 2012]

Phenotype Flk-1þ Tie2þc-KitþCD41�

Differentiation
potential

BL-CFU Definitive hematopoiesis

Smooth muscle Endothelium
Cardiomyocyte mural

cells
Transcript

factors
FGF2, activin A, Flk1,

Scl, Runx1, Gata1,
Gata2, Lmo2, Hhex,
Mixl1, Smad1, Lycat

Scl/TAL1, HoxA3,
Runx1, GATA2, LMO2,
Gfi1 and Gfi1b

Signaling
pathways

ER71, VEGF/Flk1,FGFR1,
BMP, Notch, Wnt,
Hedgehog (Hh),
phosphatidylinositol
3-kinase

Hedgehog (Hh), Notch-1,
NO signaling,
F2r-RhoA/ROCK
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lines of evidence have revealed that hematopoietic stem and
progenitor cells (HSPCs) emerge from HE cells through a process
termed as endothelial-to-hematopoietic transition (EHT). Jaffredo
et al. [1998] showed that the hematopoietic cluster-bearing floor of
the aorta is CD45þ and Flk1�, while the rest of the aortic endothelium
is CD45� and Flk1þ. The newly emerged hematopoietic cells contain
traces of Dil-conjugated low-density lipoproteins (LDL) that are used
to label endothelial cells of the aorta. Genetic tracing and imaging of
HSPC budding from embryonic aortic endothelium provided direct
evidence that HE cells undergo EHT to differentiate into multipotent
HSPCs [Zovein et al., 2008; Bertrand et al., 2010; Boisset et al., 2010;
Kissa and Herbomel, 2010]. HE cells exist transiently during
embryogenesis, and EHT occurs only in defined locations and at a
specific time window. It is largely unknown what specific niche cues
at critical times are essential for HE cell generation and differentiation
into HSCs. It has been shown that HSCs derived from HE cells migrate
to the fetal liver and then to adult bone marrow (BM) [Cumano et al.,
2001; Baron, 2013; Clements and Traver, 2013]. Although it is not a
hemogenic site generating de novo HSCs, the fetal liver plays an
important role in HSC self-renewal by supporting external HSCs
colonization [Zovein et al., 2008].

HEMATOPOIETIC DIFFERENTIATION OF HPSCS

Hematopoietic development has been studied in vivo with cutting-
edge technologies largely based on animal models, such as gene
modification in mice and zebrafish. Because of the difficulty to access
human tissues during early development, the study of regulation of
hematopoietic development in human must take alternative strate-
gies. Differentiation of hPSCs provides a great model for the study of
early embryo events in vitro (Fig. 1B). Three dimensional embryoid
bodies (EBs) of hPSC differentiation mimic in vivo embryonic
development of the three germ layers. Taking this advantage, several
methods have been developed for hematopoietic differentiation in
hPSCs through EB formation, including spontaneous EB formation
[Zambidis et al., 2005], hanging-drop EB formation [Bai et al., 2013],
and spin-EB formation [Civin et al., 1996; Yahata et al., 2002; Ye

et al., 2009]. The mesoderm-derived hematopoietic and vascular
lineages within the cystic EBs demonstrated that the sequence of
hematopoietic development in these experimental systems is similar
to that in embryo, including hematopoietic development from
hemangioblasts and HE cells. To understand the regulatory
mechanisms and to promote hematopoietic differentiation in hPSCs,
a variety of co-culture strategies intended to mimic niche cues have
also been developed, that include co-culture selected cell populations
on OP9 stromal cells [Vodyanik et al., 2005; Timmermans et al.,
2009], on stromal cells derived from AGM region [Weisel et al., 2006;
Ledran et al., 2008], on fetal liver-derived stromal cells [Ledran et al.,
2008; Ma et al., 2008], and on S17 BM-derived stromal cells
[Kaufman et al., 2001; Tian et al., 2006]. Through these studies,
tremendous progress has been made in the last decade in
understanding of human blood cell development, intermediate
identification, and unraveling regulatory mechanism. However,
generation of hPSC-derived HSCs with features of engraftment and
multilineage potential remains a challenge [Slukvin, 2013], largely
due to the difficulty of direct application of knowledge obtained from
animal models to cell culture systems, and due to many differences
between mouse and human hematopoietic differentiation systems.

HEMATOPOIETIC STEM AND PROGENITOR CELLS DERIVED
FROM hPSCs
HSCs are rare cell population in adult BM, and possess the capability
of self-renewal and the potential to differentiate to a full spectrum of
blood cells. While the identification and evaluation of HSCs is still
heavily relied on functional approach, much of the progress has been
made in recent years to correlate molecular or phenotypic signatures
with HSC functionality to facilitate HSC identification and isolation
and to gain insights into HSC development. The long-term HSCs (LT-
HSCs) from human primary tissue have been defined as
CD34þCD38�CD90þCD45RA�Lin� population [Majeti et al., 2007].
However, the immunophenotypes of hPSC-derived HSCs have not
been well documented because hPSC-derived hematopoietic cells
often have an incomparable immunophenotypes to that of adult
hematopoietic cells and exhibit low efficient engraftment in

TABLE II. Comparison of Human Hemangioblasts and Hemogenic Endothelial Cells In Vitro

Features
Hemangioblasts

Hemogenic endothelial cells

ReferencesESC ESC Cord blood

Time Days 3–4 from EB Day 4 in a chemically
defined medium

30 Days in MH-CM
culture

[Kennedy et al., 2007, 2012;
Lu et al., 2008;
Pelosi et al., 2012;
Wang et al., 2012;
Yu et al., 2012]

Phenotype KDRþCD31þCD34þCD45-VE-cadherinþ KDRþVE-CadþCD31þ CD144þCD105þ

PDGFRaþ CD34þCD45�CD43� CD146þCD31þCD45�

Ac-LDLþvWFþ

Differentiation
potential

Blast colony-forming cells (BL-CFU) Definitive hematopoiesis Definitive hematopoiesis

Smooth muscle-like cells Endothelium Endothelium
Transcript factors Mixl1þAPLNRþ, FLT1, NF-E2, EKLF,

ICAM-4, glycophorins, EGR1, GFI1,
SCL, LMO2, GATA-1, GATA2, MYC,
LYL1, MYB, SOX18, RUNX1

RUNX1, C-MYB, GATA2,
GATA1, SCL, IKAROS, PU.1

Signaling
pathways

FGF2, Activin/Nodal, BMP-4, VEGF TGFb, VEGF, bFGF, RA
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immunodeficient mice. It has been recognized that HSCs exhibit high
level of heterogeneity that reflect their discrete developmental stages
[Copley et al., 2012]. The inability to generate highly potent
engraftable HSCs from hPSCs could be attributed to a lack of
understanding in restricted temporal window for conductive factors
to act and demanding cellular microenvironments for the derivation
and maturation of HSCs from the differentiated hPSCs.

Several reports have presented encouraging results regarding the
generation of putative HSCs with long-term multilineage engraft-
ment potential from pluripotent stem cells. For example, engraftable
HSCs are promoted by ectopic expression of HoxB4 in mouse
embryonic stem cells (mESCs) followed by co-culture on OP9 stromal
cells [Kyba et al., 2002]; Notably, the effect of the enforced HoxB4
expression on human HSC generation from hPSCs are limited and
controversial. A study by Bhatia and colleagues demonstrated that
ectopic expression of HoxB4 has no effect on repopulation capacity of
hESC-derived hematopoietic cells [Wang et al., 2005], whereas a
study by Bowles et al. [2006] demonstrated that enforced-expression
of HoxB4 promotes hESC differentiation into hematopoietic cells in
vitro. Nevertheless, while the effect of the enforced HoxB4 expression
on HSC remains to be evaluated, the significance of this strategy on
clinical applications is questionable because of the risk of leukemia
after HoxB4 retroviral transduction [Zhang et al., 2008].

However, the nature of the niche signals that direct hPSC
differentiation into HSCs and the regulation mechanisms are yet to
be revealed. In the effort to infer and resemble the natural niche
signals required for HSC generation, stromal cells derived frommouse
AGM region (AM20.1B4 and UG26.1B6) and fetal liver (EL08.1D2)
were used as feeder cells in PSCs differential culture. Indeed, this
strategy yield hematopoietic cells that are capable of engraftment into
immunedeficient mice if hESCs-derived HSCs are co-injected with
stromal cells [Ledran et al., 2008], suggesting that cells derived from
embryonic tissues in the vicinity of HSC-origin are able to provide
microenvironment cues for functional HSC development from hPSCs.
It is conceivable that, stromal cells from the AGM and from the fetal
liver may provide different inductive signals to promote the
development of HSCs from hPSCs, since in embryo AGM gives rise
to de novo HSCs via EHT whereas the fetal liver is the site for external
HSCs self-renew [Zovein et al., 2008]. In another study aimed at
generating engraftable HSCs from hPSCs, hPSCs were directly
implanted into immunodeficient mice to form teratomas, which
contain differentiated tissues of all three germ layers and provide
embryonic microenvironment for hematopoietic cell development
[Amabile et al., 2013; Suzuki et al., 2013]. This approach again
suggests a crucial role of niche signals in functional HSPC
development and circumvents the difficulty in reconstitution of the
required microenvironment, although it is unsuitable for cell
therapies due to tumorigenesis of teratomas. Advanced understand-
ing of molecular and cellular mechanisms involved in multipotent
HSC development should provide insights into the generation of
patient-specific blood cells from hPSCs.

HEMOGENIC ENDOTHELIAL (HE) CELLS FROM hPSC AND EHT
Distinguishing between hemangioblasts and HE cells from cell
identity perspective is challenging because both of them are bi-
potential cells that give rise to hematopoietic and endothelial cells.

Hemangioblasts are characterized as capable of formation of blast
colony-forming cells (BL-CFCs) and expression of Flk1 (KDR or
VEGFR2) [Kennedy et al., 1997; Choi et al., 1998]. Many
hematopoietic and endothelial-related genes, including Flk1, Tie2,
GATA2, Runx1, Scl, Sca-1, and CD34, are expressed in hemangio-
blasts of mouse ES cells (mESCs) [Orkin, 1992; Millauer et al., 1993;
Kallianpur et al., 1994; Yamaguchi et al., 1994; Young et al., 1995;
North et al., 1999]. A CD45�CD31þCD144þKDRþ population is
consistent with endothelial and hematopoietic competency. These
cells exhibit hematopoietic characteristics by expression of CD45 and
the capability of hematopoietic colony formation in hematopoietic
culture condition, whereas in endothelial cell culture condition, these
cells possess endothelial properties including Dil-Ac-LDL uptake,
expression of CD31 (PECAM-1) and CD144 (VE-cadherin), and being
adherent [Wang et al., 2004]. Lu et al. [2007] identified a different type
of hESC-derived blast cells (BC), which are negative for CD34, CD31,
and KDR, also has hemangioblast potential to give rise to
hematopoietic and endothelial cells. Interestingly, hESC-BCs are
capable of differentiating into smooth muscle cells and mesenchymal
stem cells, suggesting that they contain mesodermal precursors [Ito
et al., 1996]. Compared to hESCs, hiPSC-derived BCs have a reduced
capability of expansion and hematopoietic colony formation. This
phenomenon may be explained by the observation that more than
half of hiPSC-BCs expressed b-galactosidase, indicating that hiPSC-
BCs senesce in early growth phase [Feng et al., 2010]. However, other
studies demonstrated that early senesce of hiPSC-derived BCs may
occur in selected hiPSC lines [Gokoh et al., 2011].

A study of BL-CFCs from mESCs by Lancrin et al. [2009] has
demonstrated that hemangioblasts generate hematopoietic cells
through the formation of a HE intermediate. The endothelial nature
of HE cells is charaterized by their expression of CD34, CD31, Flk1,
endoglin, and CD144.When Tie2þc-kitþCD41�HE cells isolated from
BL-CFCs or mouse embryos are cultured on OP9 stromal cells, they
give rise to CD41þ and CD45þ hematopoietic progenitor cells. Eilken
et al. has taken a different approach to investigate de novo generation
of hematopoietic cells from mECSs by tracking the differentiation of
Flk1þE-cad� mesodermal precursors at single-cell level. When the
mesodermal precursors are induced to hematopoietic differentiation
on OP9 stromal cells, they form an endothelial cell sheet prior to
emergent of hematopoietic cells. The development of the endothelium
and the budding of hematopoietic progenitor cells from the
hemogenic endothelium occur in restricted time windows [Eilken
et al., 2009]. The HE cells are developed from committed endothelial
cells, integrated into endothelial sheets by tight junction, and have a
determined fate to give rise exclusively to hematopoietic progeny
[Eilken et al., 2009].

The process of HE cells giving rise to hematopoietic cells via EHT is
also demonstrated in hPSCs [Rafii et al., 2013]. By using distinct
fluorescent reporters that are specifically expressed in endothelial
cells (CD144þ) and in hematopoietic progenitor cells (CD41þ),
Rafii et al. [2013] have demonstrated that in the presence of
vascular niche (E4ORF1þ ECs) and growth factors (BMP4, FGF2,
and VEGF), hESCs differentiate into CD144þ endothelial cells,
and then CD41þ hematopoietic progenitor cells [Seandel et al.,
2008]. It was found that, in hESC-derived endothelial cells,
the CD144þCD31þCD34þCD73� subpopulation contain the
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highest level of hemogenic potential (the frequency of 1 in 353–506
cells). In this study, the EHT is confirmed by imaging of
direct conversion of CD144þCD41� endothelial cells to
CD144þCD41þ hematopoietic progenitor cells at a single-cell level.
In addition to erythrocytes (CD71þCD235aþ), megakaryocytes
(CD41þCD42þCD61þ), granulocyte (CD15þCD33dim) and monocytes
(CD14þCD33brightCD45þ), hESC-derived lineage- hematopoietic
progenitor cells (CD15-CD41�CD45dimCD71�CD235a�) have a
potential to generate both myeloid and erythro-megakaryocytic
cells [Rafii et al., 2013]. The hemogenic activity of
CD144þCD31þCD34þCD73� endothelial cells has also been reported
[Choi et al., 2012]. Notably, hematopoietic progenitor cells derived
from HE cells in these reports lack lymphoid potential [Rafii et al.,
2013]. To track the definitive hematopoietic development in hPSCs,
Kennedy et al. [2012] have established a serum-free and stromal-free
system for hPSC differentiation and monitored T lymphocyte
development from HE cells as an indicator of definitive hematopoi-
esis. They demonstrated that the pattern of T lymphocyte develop-
ment of hPSCs on OP9-DL4 is similar to that from cord blood-derived
HSCs [Awong et al., 2009; Kennedy et al., 2012].

SIGNALING PATHWAYS REGULATING THE DEVELOPMENT OF HSCs
AND HE CELLS IN hPSCs
Many studies of molecular mechanisms underlying HE cell and HSC
development are animal models or mESCs based. A broad range of
transcription factors and signaling pathways have been implicated
in regulating HSC generation from HE cells, including c-kit, Runx1,
Scl, Gata2, Lmo2, Sox 17, Notch, retinoic acid (RA), and TGFb
(Dzierzak and Speck, 2008; Antas et al., 2013). While transcription
factor Scl is indispensable for the development of HE cells, Runx1
plays a critical role in regulating the onset of HET in HE cells
[Lancrin et al., 2009]. The sequential roles of Scl and Runx1 in de
novo hematopoietic development are consistent with a study of HE
cells in AGM of zebrafish embryos [Zhen et al., 2013]. VEGF, FGF2,
TGFb, and RA signals have been demonstrated to regulate
transition from hESC-derived CD31þ endothelial cells into
CD43þ hematopoietic cells. Inhibition of FGF2 and TGFb reduce
production of CD43þ hematopoietic cells from hESC-derived
CD31þ HE cells [Wang et al., 2012]. Furthermore, manipulating
Activin and Nodal signaling alters primitive and definitive
hematopoietic development in hPSCs [Kennedy et al., 2012].
While addition of TGFb family members, Activin and Nodal,
induces the generation of primitive erythrocytes, inhibition of
Activin and Nodal signaling by SB 431542 inhibitor promotes
definitive T lymphocyte development from CD34þCD43� progeni-
tor cells from hPSCs [Kennedy et al., 2012]. In the presence of
BMP4, FGF2, and VEGF, inhibition of TGFb signaling by SB 431542
promotes HE development in hPSCs [Bai et al., 2013; Rafii et al.,
2013]. However, TGFb signaling has a dual effect on hematopoietic
and endothelial differentiation in hPSCs. It enhances early
mesodermal development, whereas after mesoderm induction,
TGFb signaling exhibits a negative effect on generation of hPSC-
derived CD34þCD31þCD144þ hematopoietic and endothelial
progenitors [Bai et al., 2013]. The studies of hPSCs demonstrate
that overexpression of Notch ligand Dll4 in vascular feeder cells
enhances myeloid differentiation in hESCs [Rafii et al., 2013],

whereas overexpression of Notch ligand Dll4 in OP9 enhances
T lymphocyte differentiation in hPSCs [Schmitt et al., 2004;
Kennedy et al., 2012]. These data indicate that a signaling pathway
may play a different role in hematopoietic differentiation in hPSCs
when it combines with different niche cues.

A recent study of transcriptional diversity of humanHSCs and their
progeny demonstrated that gene alternative splicing may alter the
function of genes in hematopoiesis [Challen et al., 2010]. Runx1 plays
a critical role in regulating the generation of hematopoietic cells from
HE cells [Lancrin et al., 2009; Lam et al., 2010]. Runx1 (also known as
AML1, CBFA2, or PEBP2aB) is essential for the establishment of the
definitive hematopoietic cells during embryogenesis [Okuda et al.,
1996; Wang et al., 1996; Chen et al., 2009]. The human Runx1 gene
has 12 exons, and its expression is controlled by two promoters that
generate three major protein isoforms (Runx1a, 1b, and 1c)
[Michelson, 1996; Sturgeon et al., 2014]. It has been reported that
Runx1 isoforms show differential expression patterns during
hematopoietic development, but have no discernible functional
difference in mouse hematopoietic stem and progenitor cells (HSPCs)
[Sturgeon et al., 2014]. A study of Runx1 function in hPSCs has
showed that though the expression of the three isoforms of Runx1are
up-regulated during EB differentiation, enforced-expression of
Runx1a enhances hPSC-derived hematopoietic differentiation with
b-globin production and multilineage hematopoietic reconstitution
in the intra-bone transplantation model [Ran et al., 2013]. The
specific role of Runx1b/c in regulating hematopoietic differentiation
in hPSCs needs to be further elucidated.

DIRECT REPROGRAMMING FROM
NON-HEMATOPOIETIC CELLS TO HEMATOPOIETIC
STEM AND PROGENITOR CELLS

Identification and derivation of hPSCs-derived HSCs that are capable
of long-term engraftment and differentiation to multilineage
hematopoietic cells remain significant challenge. Therefore, HSCs
derived from hPSCs remain out of reach as one of the alternative
sources for therapeutic HSCs. Rafii et al. [2013] have reported that
lineage hematopoietic progenitor cells derived from HE cells
effectively differentiate to erythrocytes, megakaryocytes andmyeloid
cells, but they are unable to differentiate to lymphoid cells in vitro or
to engraft in immunedeficient NSG mice in vivo. The same group has
taken a different approach to generate engraftable hematopoietic
cells by directly reprogramming human endothelial cells to
hematopoietic progenitor cells [Sandler et al., 2014]. By ectopic
expression of transcription factors, FOSB, GFI1, RUNX1, and SPI1
(FGRS), human primary endothelial cells are reprogrammed into
engraftable hematopoietic cells in an environment of vascular niche
platform [Sandler et al., 2014]. This direct reprogramming approach
not only presents a plausible way to generate engraftable HSPCs, but
also offers a platform to investigate the roles of transcription factors
and microenvironment cues in hematopoietic development. Induc-
tion of hemogenic reprogramming is also done in mouse fibroblasts
by ectopic expression of transcription factors, GATA2, GFI1, cFOS,
and ETV6 [Pereira et al., 2013]. However, the engraftment potential of
fibroblast-reprogramming derived hematopoietic progenitor cells has
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not been demonstrated in vivo [Pereira et al., 2013]. The human
fibroblast reprogramming to hematopoietic progenitor cells has been
reported [Cheng et al., 2000]. Ectopic expression of Oct 4, a master
transcription factor for the pluripotency of ES cells and iPS cells, in
human dermal fibroblasts induces the generation of CD45þ

hematopoietic progenitor cells that give rise to granulocytic,
monocytic, megakaryocytic and erythroid lineages, and demonstrate
in vivo engraftment capacity [Cheng et al., 2000]. Oct 4, Sox 2, Klf4
and c-Myc are capable to reprogram fibroblasts to iPS cells
[Takahashi and Yamanaka, 2006]. It is unclear whether over-
expression of Oct 4 in fibroblasts induces plastic intermediates
that can be selected for hematopoietic progenitor cells in
appropriate culture condition. Nevertheless, directly reprogramming
non-hematopoietic cells into engraftable human hematopoietic stem
and progenitor cells (or specific lineage-committed cells) is an
exciting research area.

FUTURE PROSPECTIVE OF HPSC HEMATOPOIETIC
DIFFERENTIATION FOR TRANSLATIONAL
APPLICATION

Hematopoietic capability of hESCs and hiPSCs provides a novel
opportunity for regenerative medicine and pathogenic modeling,
though many hurdles need to be overcome before therapeutic
application. The low efficient production of hematopoietic cells is one
of major hurdles in hPSC hematopoietic application. To efficiently
generate hematopoietic cells, not only technical innovation is
required, but also a better understanding of molecular relevance
connecting to hematopoietic development is needed. Dependent on
the developmental stages, somemolecules exert positive and negative
effects on the differentiation of HE cells. Dissecting molecular events
during hPSC hematopoietic differentiation should provide insight for
generating hematopoietic cells with high efficiency.

Fig. 2. Timeline of hematopoietic events in in vitro hPSCs differentiation and in vivo embryo development. Time required for hematopoietic differentiation in hPSCs model (in
vitro) and in normal embryo development (in vivo). Both hemangioblast and hemogenic endothelium (HE) have been recognized as two stages of hematopoietic progenitors to give
rise to mature blood cells. However, the biological similarity of blood cells from the in vitro hPSC model and from normal embryo development need further evidence to determine
future translational application.
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Identification of transplantable hematopoietic cells is another
critical factor for clinical applications. During hPSCs differentiation,
hematopoietic progenitor cells emerge from HE cells, suggesting a
sequential developmental order. However, in vitro differentiation
may not exactly reproduce embryo events in vivo, such as the timing
differences in vitro and in vivo (Fig. 2). Whether hPSC-derived HE
cells represent primitive or definitive hematopoietic precursors is still
debatable. Therefore, the generation of engraftable HSCs from hPSC-
HE cells needs further exploration by comparing genotypes and
phenotypes of HE-derived HSCs with adult HSCs. Recapitulations of
the complex in vivo regulating hPSC-derived products and micro-
environments are crucial for determining the implanted cellular fate.
The new era will start at a successful stride to translate hPSC-derived
hematopoietic cells into clinical therapeutic progress.
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